# Asymmetric Synthesis of 4- and 5-Substituted Pipecolic Esters by Ring-Closing Metathesis and Palladium-Catalyzed Formate Reduction 

Chong-Si Sun, Yu-Shiang Lin, and Duen-Ren Hou*<br>Department of Chemistry, National Central University, 300 Jhong-Da Rd. Jhong-Li, Taoyuan, Taiwan

drhou@ncu.edu.tw

Received April 28, 2008


Asymmetric synthesis of 4- and 5-substituted pipecolic esters was achieved by the sequence of allylation, ring-closing metathesis, and palladium-catalyzed formate reduction.

Synthesis of 4- and 5-substituted pipecolic acids has received attention because these compounds are components of some biologically very potent molecules. ${ }^{1}$ For example, the FDAapproved thrombin inhibitor Argatroban contains 4-methylpipecolic acid, and human immunodeficiency virus (HIV) protease inhibitor Palinavir incorporates 4-hydroxypipecolic acid. ${ }^{2,3}$ 5-Hydroxypipecolamide was found in TNF- $\alpha$, an effective tumor necrosis-converting enzyme inhibitor (Figure 1). ${ }^{4}$ KadouriPuchot's group developed a clever method to synthesize 4-methyl- and 4-hydroxypipecolic acids asymmetrically, where

[^0]
TNF- $\alpha$ Converting Enzyme (TACE) Inhibitor


FIGURE 1. Compounds containing 4- and 5-substituted pipecolic acids.
the 4-methylenelactone $\mathbf{1}$ serves as the key synthetic intermediate. ${ }^{5}$ Recently, we reported the sequence of ring-closing metathesis (RCM) and the following regioselective palladiumcatalyzed formate reduction to form $N$-heterocycles bearing an exo-olefin. ${ }^{6}$ Therefore, the problem of regioselectivity in modifying the cycloalkenes formed by RCM is circumvented. We report herein our progress in applying this methodology to prepare the lactone $\mathbf{1}$ and the corresponding 5-methylenepipecolic acid derivative 2.



The chiral glycine enolate synthon, 5-phenylmorpholin-2-one (3), ${ }^{7}$ was alkylated with 2-(iodomethyl)allyl benzoate (4) ${ }^{8}$ to give diastereomerically pure 5 (Scheme 1). The Boc protecting group was removed with trifluoroacetic acid, and diene $\mathbf{6}$ for RCM was generated after $N$-allylation. Several common practices for the allylation on the secondary amine were tested (Table 1 ). We found that the typical reaction conditions for $N$-alkylation provided a low yield and product accompanied by the hydrolyzed lactone. ${ }^{9}$ Instead, using the sterically hindered diisopropylethylamine and anhydrous acetonitrile as the reaction solvent provided the desired product cleanly. Later, we found that microwave irradiation at $150{ }^{\circ} \mathrm{C}$ improved the yield to $70 \% .^{10}$ Ring-closing metathesis under acidic conditions gave the oxazin1 -one 7. The stereochemistry of 7 was confirmed by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOE experiment. The key intermediate, exo-olefin 1, was produced after the palladium-catalyzed formate reduction. Use of 2-di-tert-butylphosphino-2'-methylbiphenyl (8) as a

[^1]
## SCHEME 1. Asymmetric Synthesis of 1



TABLE 1. Reaction Conditions for $N$-Allylation To Prepare 6

| entry | base | solvent | temp $\left({ }^{\circ} \mathrm{C}\right)$ | time (h) | yield $(\%)$ |
| :---: | :--- | :--- | :---: | :---: | :---: |
| 1 | $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{NBr}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 75 | 14 | $13^{a}$ |
| 2 | $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{CaSO}$ | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 60 | 14 | $0^{b}$ |
| 3 | $(i-\mathrm{Pr})_{2} \mathrm{NEt}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | 75 | 14 | 14 |
| 4 | $(i-\operatorname{Pr})_{2} \mathrm{NEt}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | $120^{c}$ | 0.8 | 25 |
| 5 | $(i-\mathrm{Pr})_{2} \mathrm{NEt}$ | $\mathrm{CH}_{3} \mathrm{CN}$ | $150^{c}$ | 0.6 | 70 |

${ }^{a}$ Accompanied with hydrolyzed lactone (41\%). ${ }^{b}$ Starting material recovered. ${ }^{c}$ Microwave irradiation ( 150 W , sealed tube).

## SCHEME 2. Epimerization of 7


complexing agent gave $\mathbf{1}$ as the only product. Its oxidation was achieved with osmium tetroxide and sodium periodate to provide ketone $9,{ }^{5 a}$ the precursor to $(2 R, 4 S)$-4-hydroxypipecolic acids. To form the other enantiomeric pipecolic acids, the 9 a stereocenter of 7 was inverted by a deprotonation/protonation protocol to give diastereomer $\mathbf{1 0},{ }^{11}$ which was then converted to the exoolefin 11 (Scheme 2).

Alternating the sequence of the two allylations also allows the preparation of 5 -substituted pipecolic acids (Scheme 3). Thus, allylation of $\mathbf{3}$ with allyl bromide proceeded readily to give 12. ${ }^{11}$ However, $N$-allylation of the deprotected $\mathbf{1 2}$ with $\mathbf{4}$ was difficult. To facilitate the second allylation, the chiral auxiliary was removed to generate the methyl allylglycinate $\mathbf{1 3},{ }^{12}$

[^2] 3858.

SCHEME 3. Asymmetric Synthesis of 2

a primary amine that smoothly underwent $N$-allylation with $\mathbf{1 4}$ to afford diene 15. Subsequent protection followed by RCM gave the unsaturated pipecolic ester 16 in good yield. ${ }^{13}$ Palladium-catalyzed, regioselective formate reduction then yielded 5-methylenepipecolic ester $2,{ }^{14}$ which could be oxidized to the ketone 17. ${ }^{15}$ This could be selectively reduced in turn to the cis-5-hydroxypipecolic ester $\mathbf{1 8} .^{16}$

In conclusion, both 4 - and 5 -substituted pipecolic acids can be prepared by the sequence of asymmetric allylation, ringclosing metathesis and palladium-catalyzed, regioselective formate reduction. The ability to form both isomeric methylenepipecolic acids by this methodology demonstrates the generality of the reaction. The introduction of the functionalized allyl halides $\mathbf{4}$ or $\mathbf{1 4}^{8}$ makes conversion of the endo olefin to the exo position practical and clearly increases the synthetic application of metathesis.

## Experimental Section

(3R,5R)-tert-Butyl 3-(2-Benzoyloxymethylallyl)-2-oxo-5-phenyl-morpholine-4-carboxylate (5). To a solution of $\mathbf{3}(390 \mathrm{mg}, 1.4$ mmol ), allyl iodide $4(510 \mathrm{mg}, 1.7 \mathrm{mmol})$, and hexamethylphosphoramide (HMPA, $367 \mu \mathrm{~L}, 2.1 \mathrm{mmol}$ ) in THF ( 5 mL ) was added sodium bis(trimethylsilyl)amide (NaHMDS, 2 M in THF, 1.05 mL , $2.1 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for another 2 h at $-78^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq)}}(5 \mathrm{~mL})$, warmed to rt , diluted with water ( 5 mL ), and extracted with diethyl ether ( $3 \times$

[^3]
## JOCNote

$10 \mathrm{~mL})$. The combined organic layer was washed with sat. $\mathrm{NaCl}_{(\mathrm{aq})}$ $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes, $\left.1: 3 ; R_{f} 0.27\right)$ to give $5(292 \mathrm{mg}, 0.65 \mathrm{mmol}, 46 \%)$ as a colorless solid. Mp 117.0-120.0 ${ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-130.0\left(c 2.51, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 3 \mathrm{H})$, 7.07 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.17-5.04$ $(\mathrm{m}, 2 \mathrm{H}), 4.94-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 1 \mathrm{H}), 1.24-1.11$ (m, 9H); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.4,166.1,153.5,139.9$, $138.9,133.0,129.9,129.7,128.8,128.3,127.7,125.3,117.2,81.3$, 69.7, 66.4, 55.9, 54.7, 37.7, 27.8; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~N} 452.2073$, found 452.2082; IR (neat) 3031, 2976, 2930, 1757, 1716, 1698, 1270, $1119 \mathrm{~cm}^{-1}$.
(3R,5R)-2-(4-Allyl-2-oxo-5-phenylmorpholin-3-ylmethyl)allyl Benzoate (6). A solution of $\mathbf{5}(447.3 \mathrm{mg}, 0.93 \mathrm{mmol})$ and trifluoroacetic acid ( 2 mL ) in dichloromethane ( 2 mL ) was stirred at rt for 1 h . The solvent and TFA were removed under vacuum. The solution of deprotected 5, allyl bromide ( $560 \mathrm{mg}, 4.6 \mathrm{mmol}$ ), diisopropylethyl amine ( $360 \mathrm{mg}, 2.78 \mathrm{mmol}$ ), and acetonitrile ( 3.5 mL ) was placed in a pressure tube that was heated to $150{ }^{\circ} \mathrm{C}(150 \mathrm{~W}$, monitored by IR temperature sensor) over 10 min , then this temperature was maintained for another 40 min . After cooling to rt , the reaction mixture was concentrated and purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} / \mathrm{hexanes}, 1: 3 ; R_{f} 0.45\right)$ to give 6 $(254.5 \mathrm{mg}, 0.65 \mathrm{mmol}, 70 \%)$ as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}-8.4$ (c 1.9, $\mathrm{CHCl}_{3}$ ) ; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.05$ (dd, $J=8.3,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}$, $5 \mathrm{H}), 5.70-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=$ $0.65 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{q}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.66$ (dd, $J=11.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.25(\mathrm{~m}$, $1 \mathrm{H}), 3.99(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.09 (dd, $J=14,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,166.1,140.0,137.7,134.3,133.1$, $130.0,129.6,128.8,128.4,128.0,127.3,118.8,116.3,70.2,67.1$, 58.3, 56.8, 52.4, 32.6; HRMS-FAB $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{4} 392.1862$, found 392.1852; IR (neat) 3064, 3030, 2952, $1749,1720,1653,1601,1451,1270,1111 \mathrm{~cm}^{-1}$.
$(4 R, 9 \mathrm{a} R)$-8-Benzoyloxymethyl-4-phenyl-3,4,9,9a-tetrahydro-6 H pyrido $[2,1-c][1,4]$ oxazin-1-one (7). Five drops of 1 N hydrochloric acid was added to a solution of $\mathbf{6}(90 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$, and the solvent and excess HCl were then removed under vacuum to give the protonated 6 . Another 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and Grubbs catalyst ${ }^{17}(9.5 \mathrm{mg}, 0.115 \mathrm{mmol})$ were added to the flask, and the resulting solution was refluxed for 3 h . After being cooled to rt, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with sat. $\mathrm{NaHCO}_{3(a q)}(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes, $\left.1: 3 ; R_{f} 0.22\right)$ to give $7(80 \mathrm{mg}$, $0.22 \mathrm{mmol}, 96 \%$ ) as a colorless solid. Mp $147.0-148.0^{\circ} \mathrm{C}(\mathrm{dec}$; $[\alpha]^{20} \mathrm{D}+42.5$ ( c 2, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $8.03-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{dd}, J=$ $11.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=11.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.03(\mathrm{~m}$, $1 \mathrm{H}), 3.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 170.0,166.2,135.2,133.1$, 130.2, 129.9, 129.6, 128.9, 128.6, 128.5, 128.4, 122.8, 72.8, 67.4 , 58.0, 55.1, 48.3, 26.9; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na} 386.1368$, found 386.1374; IR (neat): 3061, 3030, 2953, 2925, 2801, 1743, 1718, 1600, 1452, 1270, $1110 \mathrm{~cm}^{-1}$.
$4 R, 9 \mathrm{a} R)$-8-Methylene-4-phenylhexahydropyrido $[2,1-c][1,4]$ oxazin-1-one (1). ${ }^{5 \mathrm{a}}$ Allyl palladium chloride dimer ( $6.05 \mathrm{mg}, 0.017 \mathrm{mmol}$ ) and 2-di-tert-butylphosphino-2'-methylbiphenyl ( $20.6 \mathrm{mg}, 0.066$ $\mathrm{mmol})$ were dissolved in DMF $(0.5 \mathrm{~mL})$ and the mixtue was stirred for 5 min . Formic acid ( $37.4 \mu \mathrm{~L}, 0.99 \mathrm{mmol}$ ), triethylamine (139

[^4] 953.
$\mu \mathrm{L}, 0.99 \mathrm{mmol})$, and $7(60 \mathrm{mg}, 0.17 \mathrm{mmol})$ in DMF $(1.1 \mathrm{~mL})$ were added in that order. After being stirred at $10^{\circ} \mathrm{C}$ for 6 h and rt for 16 h under nitrogen, the reaction mixture was concentrated and purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes, $1: 3$; $R_{f} 0.47$ ) to give $1(20.2 \mathrm{mg}, 0.083 \mathrm{mmol}, 51 \%) .[\alpha]^{20} \mathrm{D}-38(c 0.9$, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.75$ $(\mathrm{s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=11.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J$ $=11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=10.9$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=13.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{td}, J=11.5,3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,143.4,135.0,128.8,128.5,109.8,72.8,59.2$, 58.5, 51.5, 35.1, 32.1; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} 244.1338$, found 244.1342; IR (neat) 3030, 2947, 2908, 1742, 1653, 1494, 1455, $1224 \mathrm{~cm}^{-1}$.
$(4 R, 9 \mathrm{a} R)$-4-Phenylhexahydropyrido $[2,1-c][1,4]$ oxazine-1,8-dione (9). To a solution of $\mathbf{1}(28 \mathrm{mg}, 0.115 \mathrm{mmol})$ in THF ( 0.7 mL ) and water $(0.7 \mathrm{~mL})$ were added osmium tetroxide $\left(\mathrm{OsO}_{4} 2.5 \mathrm{wt} \%\right.$ in $t$ - $\left.\mathrm{BuOH}, 59 \mu \mathrm{~L}, 5.7 \times 10^{-3} \mathrm{mmol}\right)$ and sodium periodate $\left(\mathrm{NaIO}_{4}\right.$, $123.2 \mathrm{mg}, 0.58 \mathrm{mmol})$. The reaction mixture was stirred at rt for 1.5 h , quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$, and extracted with ether $(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} / \mathrm{hexanes}, 1: 1 ; R_{f} 0.47\right)$ to give 9 ( $21 \mathrm{mg}, 0.086 \mathrm{mmol}, 74 \%$ ) as a colorless oil. $[\alpha]^{20} \mathrm{D}-2.0$ (c $0.53, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.34$ (m, $5 \mathrm{H}), 4.61(\mathrm{dd}, J=11.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=11.3,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{dd}, J=7.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=8.5,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{dd}, J=7.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.69-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.3,168.8,134.8,129.7$, 129.1, 128.1, $72.5,58.9,57.5,48.9,41.0,39.5$; HRMS-FAB $(m / z)[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na} 268.0950$, found 268.0949; IR (neat) 2960, $2922,1746,1723,1577,1455,1227 \mathrm{~cm}^{-1}$.
( $4 R, 9 \mathrm{aS}$ )-8-Benzoyloxymethyl-4-phenyl-3,4,9,9a-tetrahydro-6H-pyrido[2,1-c][1,4]oxazin-1-one (10). Potassium bis(trimethylsilyl)amide (KHMDS, 0.5 M in toluene, $368 \mu \mathrm{~L}, 0.18 \mathrm{mmol}$ ) was added to a solution of $7(33.4 \mathrm{mg}, 0.092 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$, and this solution was stirred for 0.5 h . Hexamethylphosphoramide (HMPA, $33 \mu \mathrm{~L}, 0.18 \mathrm{mmol}$ ) and acetic acid $(80 \%, 35 \mu \mathrm{~L}$, 0.46 mmol ) were added to the solution at $-78^{\circ} \mathrm{C}$. After the addition, the mixture was stirred for 15 min , quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(3 \mathrm{~mL})$, and warmed to rt . The reaction mixture was diluted with water $(5 \mathrm{~mL})$ and extracted with ether $(3 \times 5 \mathrm{~mL})$. The combined organic layer was washed with water $(10 \mathrm{~mL})$ and sat. $\mathrm{NaCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc/hexanes, $1: 3 ; R_{f} 0.41$ ) to give $\mathbf{1 0}(10 \mathrm{mg}, 0.028 \mathrm{mmol}, 30 \%)$ as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}-118.2\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.05-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}$, $7 \mathrm{H}), 5.66$ (dd, $J=3.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{t}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=11.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.8,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.37-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}$, $1 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.1$, $166.2,135.5,133.1,131.3,129.9,129.7,129.0,128.9,128.4,128.4$, $122.4,72.7,67.2,64.1,60.3,51.6,30.1$; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+$ $\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na} 386.1368$, found 386.1372; IR (neat) 3030, 2932, 2852, 1742, 1717, 1652, 1456, 1269, $1100 \mathrm{~cm}^{-1}$.
(4R,9aS)-8-Methylene-4-phenylhexahydropyrido $[2,1-c][1,4]$ oxazin$\mathbf{1 - o n e}$ (11). The procedure used to prepare $\mathbf{1}$ was followed. Starting with $10(10 \mathrm{mg}, 0.028 \mathrm{mmol})$, the exo-olefin $11(4.0 \mathrm{mg}, 0.016$ $\mathrm{mmol}, 60 \%$ ) was produced after column chromatography ( $\mathrm{SiO}_{2}$, EtOAc/hexanes, $1: 3 ; R_{f} 0.78$ ) as a light yellow oil. $[\alpha]^{20}{ }_{\mathrm{D}}-126.3$ (c $0.25, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.38-7.29$ (m, $5 \mathrm{H}), 4.80(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.18$ (m, 2H), 3.57 (dd, $J=10.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.90(\mathrm{~m}, 2 \mathrm{H})$, $2.85-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.71$ $(\mathrm{td}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9$, $143.9,136.3,129.0,128.7,128.3,109.9,72.9,64.7,64.3,53.0$,

## JOCNote

36.6, 33.6; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}$ 244.1338, found 244.1335; IR (neat) 3069, 2945, 1746, 1455, 1179 $\mathrm{cm}^{-1}$.
(R)-Methyl $N$-(tert-Butyloxycarbonyl)-4-methylenepiperidine-2-carboxylate (2). Allyl palladium chloride dimer ( $4.3 \mathrm{mg}, 0.012$ mmol ) and 2-di-tert-butylphosphino-2'-methylbiphenyl ( 14.6 mg , 0.047 mmol ) were dissolved in DMF ( 0.4 mL ) and the mixture was stirred for 5 min . Formic acid ( $26.6 \mu \mathrm{~L}, 0.7 \mathrm{mmol}$ ), triethylamine ( $98.1 \mu \mathrm{~L}, 0.70 \mathrm{mmol}$ ), and 16 ( $44 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) in DMF $(770 \mu \mathrm{~L})$ were added in that order. After being stirred at $10^{\circ} \mathrm{C}$ for 6 h and rt for 16 h under nitrogen, the reaction mixture was concentrated and purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes, $\left.1: 9 ; R_{f} 0.31\right)$ to give $2(17.2 \mathrm{mg}, 0.068 \mathrm{mmol}, 58 \%)$ as a light yellow oil. $[\alpha]^{20}{ }_{\mathrm{D}}+61.8$ ( $c 1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.89(\mathrm{~s}, 0.5 \mathrm{H}), 4.84(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H})$, $4.68(\mathrm{~s}, 0.5 \mathrm{H}), 4.37(\mathrm{~d}, J=13 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.25(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.23(\mathrm{~m}, 2 \mathrm{H})$, $2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 1 \mathrm{H}), 1.45-1.41(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (rotamer) 172.4, 155.5, 141.6, 110.2, 110.0, 80.3, 54.8, 53.6, 52.1, 48.2, 46.9, 29.7, 28.3, 27.3; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}$ 256.1549, found 256.1551; IR (neat) 3075, 2973, 2929, 1745, 1702, 1659, $1172 \mathrm{~cm}^{-1}$.
( $\boldsymbol{R}$ )-Methyl $N$-(tert-Butyloxycarbonyl)-4-oxopiperidine-2-carboxylate (17). ${ }^{16}$ To a solution of $2(20 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CCl}_{4}$ $(100 \mu \mathrm{~L})$, acetonitrile ( $100 \mu \mathrm{~L}$ ), and water $(0.7 \mathrm{~mL})$ were added ruthenium(III) chloride ( $0.8 \mathrm{mg}, 3.9 \times 10^{-3} \mathrm{mmol}$ ) and periodic acid $(53.6 \mathrm{mg}, 0.24 \mathrm{mmol})$. The reaction mixture was stirred at rt for 2.5 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with water (3 $\mathrm{mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concen-
trated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexanes, $\left.1: 5 ; R_{f} 0.23\right)$ to give $\mathbf{1 7}(10.7 \mathrm{mg}, 0.042$ $\mathrm{mmol}, 53 \%)$ as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}+2.4\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (rotamer) $4.80-4.75(\mathrm{~m}, 0.5 \mathrm{H}), 4.58-4.55$ (m, 0.5H), 4.38 (d, $J=18.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.27(\mathrm{~d}, J=18.9 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.88(\mathrm{dd}, J=25.3 \mathrm{~Hz}, 19 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.37$ $(\mathrm{m}, 2 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 0.5 \mathrm{H}), 2.07-2.02(\mathrm{~m}$, 0.5 H ), $1.43-1.37(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (rotamer) 205.5, 172.5, 172.2, 162.7, 154.8, 154.3, 81.4, 54.5, 53.0, $52.4,52.3,50.9,35.9,35.7,28.2,23.8,23.6$; IR (neat) 2956, 2922, 2851, 1742, 1713, $1152 \mathrm{~cm}^{-1}$.

Acknowledgment. This research was supported by the National Science Council (NSC 95-2113-M-008-007), Taiwan. The authors thank Prof. John C. Gilbert, Santa Clara University, for helpful comments. We are grateful to Ms. Ping-Yu Lin at the Institute of Chemistry, Academia Sinica, and Valuable Instrument Center in National Central University for obtaining mass analysis. Thanks are also due to the National Center for High-performance Computing for computer time and facilities.

Supporting Information Available: Experimental procedure for preparing compounds $\mathbf{1 3}, \mathbf{1 5}$, and 16, and characterizing data including ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOE spectra of 7 and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO8008885


[^0]:    (1) Review: Kadouri-Puchot, C.; Comesse, S. Amino Acids 2005, 29, 101, and references cited thereinRecent progress: (a) Occhiato, E. G.; Scarpi, D.; Guarna, A. Eur. J. Org. Chem. 2008, 524. (b) Alegret, C.; Santacana, F.; Riera, A. J. Org. Chem. 2007, 72, 7688. (c) Jung, J.-C.; Avery, M. A. Tetrahedron: Asymmetry 2006, 17, 2479.
    (2) (a) Okamoto, S.; Hijikata, A.; Kikumoto, R.; Tonomura, S.; Hara, H.; Ninomiya, K.; Maruyama, A.; Sugano, M.; Tamao, Y. Biochem. Biophys. Res. Commun. 1981, 101, 440. (b) Kikumoto, R.; Tamao, Y.; Tezuka, T.; Tonomura, S.; Hara, H.; Ninomiya, K.; Hijikata, A.; Okamoto, S. Biochemistry 1984, 23, 85. (c) Hilpert, K.; Ackermann, J.; Banner, D. W.; Gast, A.; Gubernator, K.; Hadvary, P.; Labler, L.; Müller, K.; Schmid, G.; Tschopp, T. B.; van de Waterbeemd, H. J. Med. Chem. 1994, 37, 3889. (d) Di Nisio, M.; Middeldorp, S.; Bueller, H. R. N. Engl. J. Med. 2005, 353, 1082.
    (3) (a) Gillard, J.; Abraham, A.; Anderson, P. C.; Beaulieu, P. L.; Bogri, T.; Bousquet, Y.; Grenier, L.; Guse, I.; Lavallée, P. J. Org. Chem. 1996, 61, 2226. (b) Beaulieu, P. L.; Lavallée, P.; Abraham, A.; Anderson, P. C.; Boucher, C.; Bousquet, Y.; Duceppe, J.-S.; Gillard, J.; Gorys, V.; Grand-Maitre, C.; Grenier, L.; Guindon, Y.; Guse, I.; Plamondon, L.; Soucy, F.; Valois, S.; Wernic, D.; Yoakim, C. J. Org. Chem. 1997, 62, 3440.
    (4) Letavic, M. A.; Axt, M. Z.; Barberia, J. T.; Carty, T. J.; Danley, D. E.; Geoghegan, K. F.; Halim, N. S.; Hoth, L. R.; Kamath, A. V.; Laird, E. R.; Lopresti-Morrow, L. L.; McClure, K. F.; Mitchell, P. G.; Natarajan, V.; Noe, M. C.; Pandit, J.; Reeves, L.; Schulte, G. K.; Snow, S. L.; Sweeney, F. J.; Tan, D. H.; Yu, C. H. Bioorg. Med. Chem. Lett. 2002, 12, 1387.
    (5) (a) Agami, C.; Bisaro, F.; Comesse, S.; Guesné, S.; Kadouri-Puchot, C.; Morgentin, R. Eur. J. Org. Chem. 2001, 2385. (b) Agami, C.; Bihan, D.; Morgentin, R.; Kadouri-Puchot, C. Synlett 1997, 799. (c) Partogyan-Halim, P.; Besson, L.; Aitken, D. J.; Husson, P. Eur. J. Org. Chem. 2003, 268.

[^1]:    (6) Cheng, H.-Y.; Sun, C.-S.; Hou, D.-R. J. Org. Chem. 2007, 72, 2674.
    (7) Dellaria, J. F.; Santarsiero, B. D. J. Org. Chem. 1989, 54, 3916.
    (8) (a) Sun, C.-S.; Cheng, H.-Y.; Lin, Y.-S.; Hou, D.-R. J. Chin. Chem. Soc. 2008, 55, 435. (b) Singh, R.; Whitesides, G. M. J. Am. Chem. Soc. 1990, 112, 1190.
    (9) (a) Faul, M. M.; Kobierski, M. E.; Kopach, M. E. J. Org. Chem. 2003, 68, 5739. (b) Nilsson, J. W.; Kvarnström, I.; Musil, D.; Nilsson, I.; Samulesson, B. J. Med. Chem. 2003, 46, 3985.
    (10) Recent examples for microwave assisted amine alkylation: Cardullo, F.; Donati, D.; Fusillo, V.; Merlo, G.; Paio, A.; Salaris, M.; Solinas, A.; Taddei, M. J. Comb. Chem. 2006, 8, 834.

[^2]:    (11) Hou, D. R.; Hung, S.-Y.; Hu, C.-C. Tetrahedron: Asymmetry 2005, 16,

[^3]:    (12) (a) Chakraborty, T. K.; Hussain, K. A.; Reddy, G. V. Tetrahedron 1995, 51, 9179. (b) Ma, D.; Tian, H.; Zou, G. J. Org. Chem. 1999, 64, 120.
    (13) The alternative sequence: RCM of the protonated $\mathbf{1 5}$ then Boc-protection, gave $40 \%$ yield.
    (14) The previously reported ligand, 2-di-tert-butylphosphinobiphenyl (ref 6 ), provided a lower exo:endo ratio ( $80: 20$ ) for this substrate.
    (15) Nuňez, M. T.; Martñ, V. S. J. Org. Chem. 1990, 55, 1928.
    (16) Corre, L. L.; Dhimane, H. Tetrahedron Lett. 2005, 46, 7495.

[^4]:    (17) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1,

